Introduction to Python for Data Science – Microsoft Professional Program

The ability to analyze data with Python is critical in data science. Learn the basics with this Introduction to Python for Data Science course, and move on to create stunning visualizations.

This course is part of the Data Science track and the Artificial Intelligence track.

Introduction to Python for Data Science

About This Course

Python is a very powerful programming language used for many different applications. Over time, the huge community around this open source language has created quite a few tools to efficiently work with Python. In recent years, a number of tools have been built specifically for data science. As a result, analyzing data with Python has never been easier.

In this practical course, you will start from the very beginning, with basic arithmetic and variables, and learn how to handle data structures, such as Python lists, Numpy arrays, and Pandas DataFrames. Along the way, you’ll learn about Python functions and control flow. Plus, you’ll look at the world of data visualizations with Python and create your own stunning visualizations based on real data.

What you’ll learn

  • Explore Python language fundamentals, including basic syntax, variables, and types
  • Create and manipulate regular Python lists
  • Use functions and import packages
  • Build Numpy arrays, and perform interesting calculations
  • Create and customize plots on real data
  • Supercharge your scripts with control flow, and get to know the Pandas DataFrame

Course Syllabus

Section 1: Python Basics
Take your first steps in the world of Python. Discover the different data types and create your first variable.

Section 2: Python Lists
Get the know the first way to store many different data points under a single name. Create, subset and manipulate Lists in all sorts of ways.

Section 3: Functions and Packages
Learn how to get the most out of other people’s efforts by importing Python packages and calling functions.

Section 4: Numpy
Write superfast code with Numerical Python, a package to efficiently store and do calculations with huge amounts of data.

Section 5: Matplotlib
Create different types of visualizations depending on the message you want to convey. Learn how to build complex and customized plots based on real data.

Section 6: Control flow and Pandas
Write conditional constructs to tweak the execution of your scripts and get to know the Pandas DataFrame: the key data structure for Data Science in Python.

Meet the instructors

Course Staff Filip Schouwenaars

Filip Schouwenaars

Filip is the main course developer behind many of DataCamp’s interactive courses. His courses and tutorials were already taken by thousands of students across the world. DataCamp has trained more than 250,000 data scientists who’ve completed over 3.7 million interactive exercises.

Course Staff Jonathan Sanito

Jonathan Sanito

Jonathan works as a content developer and project manager for Microsoft focusing in Data and Analytics online training. He has worked with trainings for developer and IT pro audiences, from Microsoft Dynamics NAV to Windows Active Directory.

Before coming to Microsoft, Jonathan worked as a consultant for a Microsoft partner, implementing Microsoft Dynamics NAV solutions.

Start learning Intoduction to Python for Data Science!

You can enroll now for the Introduction to Python for Data Science course at our DataChangers Academy! Do you want to learn more? Then check out our other Data & AI courses.

Please use a Windows Live ID email address to register at the DataChangers Academy if you want to obtain a certificate after finishing the courses.

Show what you know and get a certificate

After finishing this course, you can obtain a Microsoft Professional Program certificate. In order to obtain a certificate, you can buy a voucher from us (in collaboration with MD2C).

 

2 Replies to “Introduction to Python for Data Science – Microsoft Professional Program”

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.